Continuous Improvement Automation
AI-Powered Feedback Loops
Note that agent loops don't work very well yet
graph LR
A[Codebase] --> B(GPTDiff Analysis)
B --> C{Identify Improvement}
C --> D[Generate Patch]
D --> E[Apply Changes]
E --> F[Verify]
F --> A
Core While Loop Pattern
while true; do
gptdiff "<improvement-prompt>" --apply
done
Test Enhancement Recipes
Missing Test Case Detection
# Continuously analyze test coverage gaps
while :
do
gptdiff "Identify and add missing test cases for edge conditions" \
--apply \
--temperature 0.3
done
Improvements Per Cycle:
- Null input handling tests
- Boundary value validations
- Error state simulations
- Concurrent execution checks
while true; do
gptdiff "Find and fix intermittent test failures by adding retries/cleanup" \
--model deepseek-reasoner \
--apply
done
Code Quality Automation
Tech Debt Reduction Loop
while true
do
# Prioritize worst code first
gptdiff "Refactor functions with high complexity scores" \
--apply \
--temperature 0.1
done
Security Hardening Daemon
while :; do
gptdiff "Find and fix OWASP Top 10 vulnerabilities" \
--apply \
--model deepseek-reasoner
done
Documentation Syncing
Code-Docs Alignment
while true;
do
gptdiff "Update documentation to match current implementation" \
--apply \
--temperature 0.5
done
while true; do
gptdiff "Identify and optimize slow database queries" --apply
done